10 research outputs found

    Implications for automation assistance in unmanned aerial system operator training

    Get PDF
    2012 Summer.Includes bibliographical references.The integration of automated modules into unmanned systems control has had a positive impact on operational effectiveness across a variety of challenging domains from battlefields and disaster areas to the National Airspace and distant planets. Despite the generally positive nature of such technological progress, however, concerns for complacency and other automation-induced detriments have been established in a growing body of empirical literature derived from both laboratory research and operational reviews. Given the military's demand for new Unmanned Aerial System (UAS) operators, there is a need to explore how such concerns might extend from the operational realm of experienced professionals into the novice training environment. An experiment was conducted to investigate the influence of automation on training efficiency using a Predator UAS simulator developed by the Air Force Research Laboratory (AFRL) in a modified replication of previous research. Participants were trained in a series of basic maneuvers, with half receiving automated support only on a subset of maneuvers. A subsequent novel landing test showed poorer performance for the group that received assistance from automation during training. Implications of these findings are discussed

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Full text link

    Downloaded from

    No full text
    Today’s regional military conflicts are increasingly likely to occur in populated urban areas, in, around, over, and under unknown buildings. This places land forces in dangerous and unpredictable situations, and in many instances the conflicts also threaten noncombatants

    Engagement and not workload is implicated in automation-induced learning deficiencies for unmanned aerial system trainees

    No full text
    Automation has been known to provide both costs and benefits to experienced humans engaged in a wide variety of operational endeavors. Its influence on skill acquisition for novice trainees, however, is poorly understood. Some previous research has identified impoverished learning as a potential cost of employing automation in training. One prospective mechanism for any such deficits can be identified from related literature that highlights automation's role in reducing cognitive workload in the form of perceived task difficulty and mental effort. However three experiments using a combination of subjective self-report and EEG based neurophysiological instruments to measure mental workload failed to find any evidence that link the presence of automation to workload or to performance deficits resulting from its previous use. Rather the results in this study implicate engagement as an underlying basis for the inadequate mental models associated with automation-induced training deficits. The conclusion from examining these various states of cognition is that automation-induced training deficits observed in novice unmanned systems operators are primarily associated with distraction and disengagement effects, not an undesirable reduction in difficulty as previous research might suggest. These findings are consistent with automation's potential to push humans too far "out of the loop" in training. The implications of these findings are discussed

    Blood on the Tracks: Turn-of-the-Century Streetcar Injuries, Claims, and Litigation in Alameda County, California

    No full text
    corecore